Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(44): 23972-23985, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874934

RESUMO

Tandem mass spectrometry (MS/MS) using fragmentation has become one of the most effective methods for gaining sequence and structural information on biomolecules. Ion/ion reactions are competitive reactions, where either proton transfer (PT) or electron transfer (ET) can occur from interactions between multiply charged cations and singly charged anions. Utilizing ion/ion reactions with fluoranthene has offered a unique method of fragment formation for the structural elucidation of biomolecules. Fluoranthene is considered an ideal anion reagent because it selectively causes electron-transfer dissociation (ETD) and minimizes PT when interacting with peptides. However, limited investigations have sought to understand how fluoranthene─the primary, commercially available anion reagent─interacts with other biomolecules. Here, we apply deuterium labeling to investigate ion/ion reaction mechanisms between fluoranthene and divalent, metal-adducted carbohydrates (Ca2+, Mg2+, Co2+, and Ni2+). Deuterium labeling of carbohydrates allowed us to observe evidence of hydrogen/deuterium exchange (HDX) occurring after ion/ion dissociation reactions. The extent of deuterium loss is dependent on several factors, including the physical properties of the metal ion and the fragment structure. Based on the deuterium labeling data, we have proposed ETD, PTD, and intermolecular PT─also described as HDX─mechanisms. This research provides a fundamental perspective of ion/ion and ion/molecule reaction mechanisms and illustrates properties that impact ion/ion and ion/molecule reactions for carbohydrates. Together, this could improve the capability to distinguish complex and heterogeneous biomolecules, such as carbohydrates.


Assuntos
Prótons , Espectrometria de Massas em Tandem , Deutério , Carboidratos , Ânions , Medição da Troca de Deutério/métodos
2.
Analyst ; 145(8): 3056-3063, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32141454

RESUMO

Hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is a well-established technique for structural analysis of proteins. In HDX experiments it is common to label for multiple, different lengths of time to characterize protein structures and dynamics. However, applications of HDX to carbohydrates have been limited due to the rapid exchange rates of hydroxyls, which have also prevented the development and application of methods that sample HDX at multiple timepoints. Theta capillaries pulled to electrospray tips have been used to achieve microsecond reaction times. Here, we report the utilization of theta-ESI emitters to achieve multiple timepoints for deuteration of carbohydrates. We increased the labeling time for HDX by increasing the initial ESI droplet sizes using theta-ESI emitters with increasing tip opening sizes. The reaction times achieved by varying the tip sizes ranged from sub-microsecond to ∼20 µs, with the average number of deuterium exchanges varying from 0.5 ± 0.2 D to 5 ± 3 D for sodium-adducted melezitose, which contains 11 labile hydrogens. Our findings are significant because this is the first report of carbohydrates analyzed by solution-phase HDX to achieve multiple H/D exchange timepoints.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Trissacarídeos/química , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
J Phys Chem B ; 124(3): 479-486, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878783

RESUMO

Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan- and carbohydrate-metal adducts have been characterized, several questions persist concerning the mechanism of transfer of carbohydrates from ESI droplets into the gas phase. Using various computational methods, including molecular dynamics, steered molecular dynamics, and density functional theory calculations, we present a mechanistic investigation on the evaporation of solvent from nanosized droplets, formation of carbohydrate-metal adducts, and their subsequent release into the gas phase. We relate the computational results to mass spectra of melezitose, a model carbohydrate, and its permethylated derivative. Our results confirm two mechanisms for the release of carbohydrate-ion adducts from solvated droplets. Native (unmodified) carbohydrates are ionized via the charged residue model, while the permethylated derivative is ionized via the ion evaporation model. For both mechanisms, the monomer carbohydrate-metal adduct is the dominant species observed. This work illustrates that the ionization mechanisms are dictated by interactions between the carbohydrate and solvent, and coordination of the carbohydrate with the metal ion. Thus, these results provide insight into the molecular interactions that govern the mechanism of release.


Assuntos
Nanoestruturas/química , Sódio/química , Trissacarídeos/química , Água/química , Configuração de Carboidratos , Teoria da Densidade Funcional , Gases/química , Modelos Químicos , Simulação de Dinâmica Molecular , Espectrometria de Massas por Ionização por Electrospray
4.
J Am Soc Mass Spectrom ; 29(10): 2030-2040, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29998361

RESUMO

Characterizing glycans is analytically challenging since glycans are heterogeneous, branched polymers with different three-dimensional conformations. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been used to analyze native conformations and dynamics of biomolecules by measuring the mass increase of analytes as labile protons are replaced with deuterium following exposure to deuterated solvents. The rate of exchange is dependent on the chemical functional group, the presence of hydrogen bonds, pH, temperature, charge, and solvent accessibility. HDX-MS of carbohydrates is challenging due to the rapid exchange rate of hydroxyls. Here, we describe an observed HDX reaction associated with residual solvent vapors saturating electrospray sources. When undeuterated melezitose was infused after infusing D2O, samples with up to 73% deuterium exchange were detected. This residual solvent HDX was observed for both carbohydrates and peptides in multiple instruments and dependent on sample infusion rate, infusion time, and deuterium content of the solvent. This residual solvent HDX was observed over several minutes of sample analysis and persisted long enough to alter the measured deuterium labeling and possibly change the interpretation of the results. This work illustrates that residual solvent HDX competes with in-solution HDX for rapidly exchanging functional groups. Thus, we propose conditions to minimize this effect, specifically for top-down, in-electrospray ionization, and quench-flow HDX experiments. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...